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Abstract 

Shape-deforming processes (e.g., squashing, bending, twisting) can radically alter objects’ 
shapes. After such a transformation, some features are due to the object’s original form, while 
others are due to the transformation, yet it is challenging to separate the two. We tested whether 
observers can distinguish the causal origin of different features, teasing apart the characteristics of 
the original shape from those imposed by transformations, a process we call ‘shape scission’. 
Using computer graphics, we created 8 unfamiliar objects and subjected each to 8 transformations 
(e.g., "twisted", "inflated", "melted"). One group of participants named transformations consistently. 
A second group arranged cards depicting the objects into classes according to either (i) the 
original shape or (ii) the type of transformation. They could do this almost perfectly, suggesting that 
they readily distinguish the causal origin of shape features. Another group used a digital painting 
interface to indicate which locations on the objects appeared transformed, with responses 
suggesting they can localise features caused by transformations. Finally, we parametrically varied 
the magnitude of the transformations, and asked another group to rate the degree of 
transformation. Ratings correlated strongly with transformation magnitude with a tendency to 
overestimate small magnitudes. Responses were predicted by both the magnitude and area 
affected by the transformation. Together, the findings suggest that observers can scission object 
shapes into original shape and transformation features and access the resulting representational 
layers at will. 

 
Keywords: vision; objects; recognition; categorization; perceptual organization; Gestalt  
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1 Introduction 

Every object in our environment is the 
result of generative processes such as 
manufacture, biological growth, or self-
organization in response to physical forces 
(e.g., gravity or temperature). These 
processes shape objects. For example, 
dough is kneaded into a croissant, a shoot 
grows into a tree, a tent droops under gravity, 
and a scoop of ice cream melts into a puddle. 
The transformation of object shape poses a 
challenge to our visual and cognitive 
systems, which have to solve two 
complementary and linked inferences: 
recognizing objects across transformations, 
and recognizing transformations across 
objects. While there is a huge literature on 
object recognition (Biederman, 1987; DiCarlo, 
Zoccolan, & Rust, 2012; Logothetis & 
Sheinberg, 1996; Pasupathy, El-Shamayleh, 
& Popovkina, 2018; Riesenhuber & Poggio, 
2002), far less attention has been paid to the 
recognition of transformations (Arnheim, 
1974; Leyton, 1989; Mark & Todd, 1985; Ons 
& Wagemans, 2012; Pinna, 2010; Pinna & 
Deiana, 2015; Pittenger & Todd, 1983; 
Schmidt & Fleming, 2018; Spröte & Fleming, 
2013, 2016). Here we investigate the 
perception of object transformations, focusing 
on the extent to which participants can 
determine the causal origin of different shape 
features (Fig. 1).  

Specifically, when presented with a 
single, static image of an unfamiliar object, 
there is a fundamental ambiguity about the 
origin of its observable features. Some 
features may ‘belong’ to the object, while 
others may be imposed or added by a 
transformation that has altered it from its 
original form. Here, we investigate the extent 
to which participants can tease apart these 
different causal origins, distinguishing shape 
features that ‘belong’ to the object from those 
that ‘belong’ to a shape-altering 
transformation applied to the object. We call 
this process ‘shape scission’ (Schmidt 
& Fleming, 2018; Spröte & Fleming, 2016). 

 

 
Figure 1. Example of a transformed object in 
which different shape features are produced by 
different causal origins-such as the stamped 
ridges or the punched holes. 
 
1.1 Related work 

When presented with a pair of objects 
that are related to one another by some kind 
of transformation, how well can we identify 
features that the objects have in common? A 
number of studies have investigated the 
extent to which observers can identify 
corresponding features or points across 
transformations. The findings suggest that 
observers are remarkably good at 
determining correspondences across a wide 
range of 2D and 3D transformations, 
including complex non-rigid deformations 
(Cornelis, van Doorn, & Wagemans, 2009; 
Koenderink, van Doorn, Kappers, & Todd, 
1997; Phillips, Todd, Koenderink, & Kappers, 
1997; Phillips, Todd, Koenderink, & Kappers, 
2003; Schmidt & Fleming, 2016; Schmidt, 
Spröte, & Fleming, 2016; Ward, Isik, & Chun, 
2018). 

A more challenging case is when only a 
single object is presented, and observers are 
asked to infer object’s causal history (Leyton, 
1989) without any reference figure to 
compare against (Arnheim, 1974; Mark 
& Todd, 1985; Pinna, 2010; Pinna & Deiana, 
2015; Pittenger & Todd, 1983; Schmidt 
& Fleming, 2018; Spröte & Fleming, 2013, 
2016). Despite the fact that this is an under-
constrained task, under appropriate 
circumstances, we can make certain 
inferences about the processes that have 
shaped an object in its past. For example, the 
croissant in Figure 2B, appears to have been 
bent. Pinna (2010) showed that observers 
consistently assigned specific meanings to 
line drawings of simple shapes subjected to 
different transformations (e.g., "gnawed" or 
"deliquescing" squares). Our own previous 
findings suggest that observers can also (i) 
match the amount of bending between 
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different objects and (ii) discount the effects 
of bending for single objects (Spröte 
& Fleming, 2016). There is also evidence that 
the inference of causal history can affect the 
judgment of other shape characteristics (such 
as symmetry axis and front and back; Spröte, 
Schmidt, & Fleming, 2016) and the 
perception of illusory motion (Chen & Scholl, 
2016). 

Notably, Chen and Scholl (2016) also 
reported a distinct effect of inferred causal 
history on visual processing. Specifically, they 
asked observers to report whether a change 
of a square to a truncated square (with a 
piece missing) was sudden or gradual. They 
found that sudden changes were to some 
extent perceived as gradual-but only when 
the resulting truncated square was consistent 
with a causal intrusion or extrusion event 
(e.g., when a disc "pushed" into the square 
was followed by an indentation in the shape 
of an arch entrance rather than in the shape 
of a disc). Therefore, the illusory motion 
demonstrated that observers saw events 
differently depending on inferred causal 
history. This is a strong example of causal 
history impacting perceptual processes, 
although more generally both perception and 
cognition—including, for example mental 
imagery, or even explicit reasoning—may be 
involved in inferences about causal history. 

 
1.2 Shape Scission 

Here, we suggest that one useful way to 
pose inferences about transformations and 
causal history is in terms of a process we call 
shape scission. The term ‘scission’ is typically 
associated with the perception of 
transparency, in which the visual system must 
separate a single retinal intensity or colour 
value into two distinct surface layers, visible 
along a single line of sight (Anderson, 1997; 
Anderson, 2003; Koffka, 1935/1965; Masin, 
1999; Metelli, 1970). However, it also used to 
describe blind source separation problems 
more generally, such as the separation of 
retinal luminance values into reflectance and 
illumination to achieve lightness constancy 
(e.g., Anderson & Winawer, 2005; Kanizsa, 
1955; Metelli, 1985; Singh & Anderson, 2002; 
cf. intrinsic image analysis, Barrow & 
Tenenbaum, 1978) (Fig. 2A). In scission 
models of perception, the sources are 

represented as separate layers capturing the 
contribution of each source, as in intrinsic 
image analysis. By analogy, ‘shape scission’ 
describes the separation of the observed 
shape into separate layers representing (i) 
the original shape, and (ii) the transformation 
that produced the observed shape from the 
original shape (Fig. 2B). In other words, the 
process of ‘shape scission’ distinguishes 
between intrinsic contributions (e.g., typical 
shape, material properties) and extrinsic 
contributions (e.g., orientation, lighting, 
causal history) to the observed shape. In the 
limit, if the visual system were able to do this 
perfectly, we would end up with two causal 
layers representing the intrinsic and extrinsic 
factors, allowing us to fully recover both the 
original shape and the causal history or 
transformation. Of course, in practice, we 
rarely have a vivid subjective experience of 
the original shape or exactly what has been 
done to it (e.g., we cannot perceptually invert 
the complex pattern of folds and creases in a 
crumpled ball of paper). However, we suggest 
that under many circumstances we can at 
least partially separate features of objects 
based on their causal origin. Note that in 
contrast to other scission processes, ‘shape 
scission’  is not necessarily an unconscious 
perceptual inference but may involve 
cognitive as well as visual components. 

 

 
Figure 2. (A) Illustration of the scission problem 
in lightness perception (inspired by Adelson, 
2000). (B) Illustration of the scission problem in 
shape perception. 

 
1.3 Current Study 

Probing the exact nature of shape 
representations in the brain is challenging, 
but we reasoned that if the visual system can 
at least partially scission shape, it should 
enable participants to perform a number of 
tasks that otherwise, due to their ill-posed 
nature, would be difficult or impossible to 
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perform. Specifically, we sought to test 
whether observers can: (1) identify 
transformations that have been applied to 
objects, (2) separate features by their causal 
origin, (3) localize features associated with 
shape-altering transformations, and (4) 
estimate the magnitude of transformations 
applied to objects. To this end, we produced a 
set of handcrafted, novel 3D objects and 
tested these different aspects of ‘shape 
scission’ by asking observers to access 
information in different causal layers. 
Specifically, we asked them to identify 
transformations and assign meaning to them, 
classify objects according to their original 
shape or according to transformations, 
indicate transformed regions on the object via 
a painting interface, and estimate the overall 
transformation magnitude. This set of 
experiments goes beyond previous studies in 
several key ways: (1) we investigate a 
broader range of transformations with 
parametric variations of the magnitude of 
transformation. (2) We use carefully 
controlled stimuli with factorial combinations 
of original shape and transformation with 
other factors held constant. (3) We test 
multiple tasks on the same stimulus set, 
providing convergent evidence for ‘shape 
scission’. (4) Most importantly, the use of 
transformations with localizable effects 
enables comparisons between human 
judgments and computational measures 
applied directly to the underlying 3D mesh 
representations, paving the way for the 
development of image-computable models for 
predicting human judgments. 

 
2 Experiment 1 (Free Naming) 

 The first experiment was conducted to 
validate our stimuli. As the stimuli were 
handcrafted by us, we wanted to make sure 
that they actually resemble real-world 
transformations. To test this, we employed a 
free naming task in which participants were 
asked to provide names describing the 
transformations that had been applied to the 
objects. 
 
2.1 Materials and Methods 
 2.1.1 Participants. 16 students from 
Justus-Liebig-University Giessen, Germany, 

with normal or corrected vision participated in 
the experiment for financial compensation. All 
participants gave informed consent, were 
debriefed after the experiment, and treated 
according to the ethical guidelines of the 
American Psychological Association. All 
testing procedures were approved by the 
ethics board at Justus-Liebig-University 
Giessen and were carried out in accordance 
with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki). 
 
 2.1.2 Stimuli.  For Experiment 1, we 
created images of 64 transformed objects, 
defined by eight different transformations 
applied to eight novel 3D base objects. The 
details are described in the following. All 
stimuli can be obtained from 
https://doi.org/10.5281/zenodo.2609016.  
 
 2.1.2.1 Base objects and 
transformations. We used Blender 2.76 
(Stichting Blender Foundation, Amsterdam, 
NL), an open-source 3D computer graphics 
application, to create eight irregular base 
objects (Fig. 3A). Then, we created for each 
of these base objects eight different versions 
with localized transformations, using Blender 
Sculpt Tools (built-in tools plus "Dried Ground 
Brush" by DennisH2010, "Custom brushes" 
by vAonom, and "OrbBrushesPack" by 
stkopp) (Fig. 3B). Note that in Experiment 1-
3, participants were never shown the base 
objects.  
 
 2.1.2.2 Renderings. The render engine 
used to generate the final images was 
Maxwell (V. 3.0.1.3; NextLimit Technologies, 
Madrid, Spain). All base objects and 
transformed objects were rendered with a 
blue plastic material, that in a previous study 
was judged to be of intermediate softness 
(Schmidt, Paulun, van Assen, & Fleming, 
2017). The ground plane was rendered with a 
textured grey surface. The images were 
rendered at a resolution of 800 ´ 600 pixels, 
a sampling level of 18, and scenarios were 
lighted by a studio-like environment map. A 
selection of stimuli rendered for Experiments 
1-3 is depicted in Figure 3.  
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Figure 3. (A) Example of a contrasted base and 
transformed object. (B) The eight base objects. 
(C) The eight different versions of the first base 
object (black frame in A) with localized 
transformations. We used the same tools to 
produce eight versions of each of the other base 
objects. (D) Another example for a base object 
and transformed object, with a depiction of the 
transformed object where we highlight and 
magnify the regions of transformation. 
  
 2.1.3 Procedure. In each trial, we 
presented a participant with all eight stimuli of 
one transformation class at once (e.g., all 
stimuli shown in Fig. 1B)-arranged at random 
across two monitors, with four stimuli each. 
We asked participants to "name or describe 
the change or process that happened to the 
objects". They were allowed to provide 
multiple responses per class, but at least one 
response was required. The experiment was 
conducted in German and responses were 
written on paper. The height and width of 

each stimulus on screen was 16.0 ´ 21.3 cm 
(about 18.33 ´ 24.41° of visual angle at a 
monitor distance of about 50 cm). Stimuli 
were presented on a white background on 
two Dell U2412M monitors at a resolution of 
1920 x 1200 pixels. Each participant 
responded to transformation classes in 
random order. Participants were never shown 
the base objects.  
 
 2.1.4 Analysis. Prior to data collection, 
we decided to exclude nouns referring to 
object features (e.g., "holes") or descriptions 
referring to materials (e.g., "stone") from the 
analysis. This eliminated 21% of total 
responses, with 13% due to participants 
responding "holes", "balls, and "spikes" (to 
transformations in Fig. 5A, B, and D, 
respectively). While these responses could 
plausibly be a means by which observers 
sought to describe causal processes, we 
cannot rule out that they simply describe 
visible shape features. Note that this 
percentage of exclusions refers to the entirety 
of all responses, including multiple responses 
from single participants. Only a single 
combination of participant and transformation 
class (out of 48, i.e. 2%) was completely 
removed. Data can be obtained from 
https://doi.org/10.5281/zenodo.2609016. 
 
2.2 Results and Discussion 
 Responses were tightly constrained, and 
showed high mutual agreement between 
participants. Even though no restrictions were 
placed on the participants’ responses, the 
average agreement across transformations 
for the single most frequent response was 
about 78% (range: 44-100%) (Figs. 4 and 5). 
For five out of eight transformation classes, 
this agreement was > 80% (Fig. 4A, C, D; 
Fig. 5A, C). Additionally, for all but one 
transformation (Fig. 4B), most participants 
agreed on a single description fitting the 
stimuli best (as can be seen from the 
difference in word size in the word clouds). 
We replicated these findings in a control 
experiment where each participant was 
presented with just a single stimulus 
(supplementary Figure S1). 
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Figure 4. Results of the free naming task for first 
four of the transformation classes. Each of the 
panels (A)-(D) shows an example stimulus from 
our experiment, a real-world example that was 
chosen by us to express the same or similar 
transformation, and participant responses as a 
word cloud. The size of each word within a cloud 
depends on its frequency across all participants 
(e.g., in (A) "grown/bulged out" was more 
frequent compared to "pierced/pressed in"). The 
color of each word within a cloud depends on the 
correspondence between participants-the color 
bar gives correspondence between % of 
participants-with the value of highest 
correspondence marked in the color bar (e.g., in 
(A) "grown/bulged out" was produced by 88% of 
participants). All images are reprinted with 
permission: ‘Overgrown seashell’ and ‘Cut butter’ 
by first author (A, C); ‘Gnawed wood’ by Lamiot, 
2014, is released under Create Commons CC BY-
SA 3.0 [https://creativecommons.org/licenses/by-
sa/3.0/] (B); ‘Cracks’ is released free of copyrights 
under Creative Commons CC0 (D). 
 
In the following, we refer to the transformation 
classes with the names provided by 
participants (Figs. 4 and 5): "grown", 
"twisted", "cut", "dried", "indented", "inflated", 
"melted", and "stretched". 
 
3 Experiment 2 (Classification task) 

Having validated our stimuli, we tested 
whether participants could separate a shape 
into the different contributions of base object 
and transformation (i.e., causal history). 
 

 
Figure 5. Results of the free naming task for 
second four of the transformation classes. For 
details see Fig. 3. All images are reprinted with 
permission: ‘Indented putty’ and ‘Stretched 
balloon’ by first author (A, D); ‘Litoria chloris 
calling’ by Froggydarb, 2006, is released under 
Create Commons CC BY-SA 3.0 
[https://creativecommons.org/licenses/by-sa/3.0/] 
(B); ‘Chocolate cake’ by The Bake More, 2010 
(C).  
 
3.1 Materials and Methods 
 3.1.1 Participants. A new group of 15 
students from Justus-Liebig-University 
Giessen, Germany, with normal or corrected 
vision participated in the experiment for 
financial compensation. Participant 
procedures were the same as in Experiment 
1. 
 
 3.1.2 Stimuli. Stimuli were the same 64 
objects as in Experiment 1, printed out on 
laminated cards (Fig. 6A). The height and 
width of each stimulus was 13.0 ´ 17.3 cm. 
Viewing distance was unconstrained. All 
stimuli can be obtained from 
https://doi.org/10.5281/zenodo.2609016. 
 
 3.1.3 Procedure. In each experimental 
trial, we presented a participant with all 64 
stimuli at once, laid out on a table in a 
random arrangement with all stimuli visible 
(Fig. 6A). In the transformation instruction 
condition, we asked participants to "group 
objects according to what happened to them". 
We told them they could form as many 
groups, with as many members per group as 
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they wanted to. After they were finished, we 
asked them to leave the room and the 
experimenter registered their responses. In 
the shape instruction condition, we asked the 
participants to "group objects according to the 
shape they had before something happened 
to them". To reduce the frequency of 
unintentional errors, we asked them after they 
finished each condition to go through their 
group arrangements once more and make 
sure that every object was in the group they 
thought it belonged to. Each participant 
responded to each of the two instructions in 
random order. Note that participants were 
never shown the base objects.  
 
 3.1.4 Analysis. We organized responses 
in grouping matrices, where cells were 
defined by combinations of all 64 stimuli, and 
each cell was given a value depending on 
whether the two stimuli were grouped by 
participants or not (Fig. 6B). This allows us to 
compare responses to predictions for 
groupings based on ground truth 
transformation or ground truth base object, 
respectively. If participants were able to 
scission shape, they should group together all 
stimuli from one transformation class in the 
transformation instruction and all stimuli 
derived from the same base object in the 
shape instruction. Data can be obtained from 
https://doi.org/10.5281/zenodo.2609016. 
 
3.2 Results and Discussion 
 Participant's performance was close to 
optimal, indicated by very high correlations 
between responses and prediction matrices 
for both instructions (Fig. 6B; transformation 
instruction: R² = 0.99. Note that identical 
stimuli were presented in the two conditions. 
The differences in responses must reflect the 
participants’ ability to group according to one 
criterion or the other at will. These results 
strongly suggest that for these stimuli 
participants are excellent at teasing apart the 
original shape features from those due to the 
transformations applied to the objects. 
 Some caution should be taken in 
interpreting these results as evidence for 
‘shape scission’ in its fullest form (i.e., 
segmenting a single unfamiliar shape into 
distinct, superimposed causes). In particular, 
here, rather than showing isolated shapes, 

we presented many shapes that were related 
to one another in terms of the original shape 
or transformation. Thus, we cannot infer how 
individual shapes would be interpreted when 
presented in isolation. It is likely that 
participants used comparisons between the 
stimuli to identify the factors ‘original shape’ 
and ‘transformation’.  Nevertheless, this 
factorization is itself a non-trivial ability. Due 
to the stimulus design, shapes could not be 
template-matched to one another. Instead, 
participants must somehow identify and 
abstract the statistical features that are 
common to different shapes that have been 
subjected to the same transformation. 
Indeed, the fact that they could at will select 
different internal criteria depending on the 
instructions—presumably based on different 
shape features—suggests that sophisticated 
perceptual organization processes underlie 
the categorization decisions. 
 It has been shown previously that 
transformations are also inferred from 
changes in 2D contour (e.g., Chen & Scholl, 
2016; Pinna, 2010; Spröte et al., 2016). 
Moreover, 2D contours from projections of 3D 
objects define local shape at the 
corresponding positions on the 3D object 
(e.g., Norman, Dawson, & Raines, 2000; 
Richards, Koenderink, & Hoffman, 1987). 
This suggests that for many transformations, 
contour information alone might be sufficient 
to classify objects according to their 
transformations. For example, "melted" and 
"stretched" objects from our stimulus set will 
have clearly distinct 2D contours. However, 
for other inferences such as the localization 
or magnitude of transformation (Experiments 
3 and 4), we have to rely on 3D object 
representations. 
 

4 Experiment 3 (Location task) 

 After showing that participants assign 
meaning to the transformations in our stimuli 
(Exp. 1) and are able to group stimuli 
according to their base object and the applied 
transformation, (Exp. 2), we sought to test 
whether they localize features introduced into 
the object by shape-altering transformations. 
Specifically, we asked them to mark the 
regions affected by a transformation, by 
digitally painting directly onto the stimuli. 
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Figure 6. Procedure and results of the 
classification task. (A) A mock participant 
completing the task according to the 
transformation instruction (left: initial random 
arrangement; middle: during task; right: final 
arrangement). (B) Grouping matrices for 
transformation instruction (left) and shape 
instruction (right). The matrices show grouping 
responses averaged across all participants, with 
individual response = 1 (white) when two stimuli 
were in the same group and response = 0 (black) 
when two stimuli were in different groups. Stimuli 
are arranged along the two axes so that those 
from the same transformation class are at 
consecutive positions, with the same order of 
base objects within each class. The resulting 
prediction matrices are plotted small below the 
result matrices. R² values are based on the 
correlations between the (lower triangular parts 
of) prediction and response matrices. 
 
4.1 Materials and Methods 
 4.1.1 Participants. A new group of 56 
students from Justus-Liebig-University 
Giessen, Germany, with normal or corrected 
vision participated in the experiment for 
financial compensation. Participant 
procedures were the same as in Experiment 
1. 
 
 4.1.2 Stimuli. Stimuli were the same 64 
objects as in Experiment 1, presented via an 
iPad. The height and width of each stimulus 
on screen was 15.5 ´ 20.7 cm (free viewing 
distance). Stimuli were presented at a 
resolution of 2732 x 2048 pixels. All stimuli 
can be obtained from 
https://doi.org/10.5281/zenodo.2609016. 
 
 

 4.1.3 Procedure. In each trial, we 
presented one of the 64 stimuli on an iPad 
and asked the participant to "paint the areas 
on the object that appear deformed to you" 
(Fig. 7A). We also told participants that 
painted areas outside the object contour 
would not be considered in the analysis. 
Responses were made via an Apple Pencil. 
The interface allowed them to change the 
size of the virtual brush and to remove 
erroneous strokes with an erase tool. Once 
the participant was satisfied that they had 
painted all the relevant portions of the 
stimulus, they proceeded to the next trial by 
tapping a button on the interface. At the end 
of each trial, responses for each pixel in each 
stimulus were binary (either painted or not). 
Each participant responded to 16 stimuli in 
random order, with each transformation and 
base object occurring twice within the 16 
trials. After all participants had completed the 
experiment, each stimulus was responded to 
by 14 participants. Note that participants were 
never shown the base objects. 
 
 4.1.4 Analysis. First, all painted regions 
outside each object were discarded. Second, 
we averaged the binary response maps 
across all 14 participants for each stimulus, 
and normalized to the range [0,1]. This 
produced a single image per stimulus, in 
which lighter regions indicated more 
frequently painted regions across participants 
(Fig. 7C). This allowed us to compare 
responses to predictions for transformation 
location groupings based on ground truth 
transformation. Ground truth was obtained 
from the differences between the 3-
dimensional meshes of the transformed 
object and the base object. Specifically, we 
computed the Euclidean distance in 3D 
between each visible vertex in the 
transformed object and its counterpart in the 
base object, and then projected this with the 
same view frustum as the stimulus 
renderings, such that for every pixel in the 
stimulus, there was a corresponding value of 
the difference between transformed and 
original shape. We normalized all differences 
per shape to the range [0,1] and plotted it, 
producing a single image per stimulus, in 
which lighter regions indicated larger 
differences between transformed and base 
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object (Fig. 7B). In the following, we 
correlated the response image to the ground 
truth deformation image across all stimuli of 
each transformation class. For comparison, 
we calculated chance level correlation by 
comparing the response image for a given 
stimulus with the mesh difference predictions 
from all but the actual transformation class for 
the same stimulus. For example, we 
correlated the response to the "cut" base 
object A to the ground truth deformation 
images of the "inflated" base object A, the 
"dried" base object A, and so on, across all 
stimuli per transformation class. We 
calculated z scores to compare the average 
correlation coefficient across stimuli within 
each transformation class against chance 
level for that class: if participants were able to 
localize the transformations, correlations 
should be higher than chance. Note that z 
scores were computed based on pixel-by-
pixel correlations, thereby presumably 
somewhat overestimating significance as 
participants were not able to independently 
set individual pixel values. Data can be 
obtained from 
https://doi.org/10.5281/zenodo.2609016. 

 
Figure 7. Procedure, analysis and results of the 
painting task. (A) A mock participant is completing 
a single trial of the task. (B) For analysis, we 
calculated the difference between the 
transformed mesh and the mesh of the base 
object. This process is illustrated here with an 
example shape and transformation. Then, we 
calculated the resulting mesh difference 
prediction with the (C) average painting response 
of 14 participants for this shape. (D) Correlation 

between mesh difference prediction and average 
painting response across all stimuli per 
transformation class. The dotted lines indicate 
chance correlation, obtained by correlating the 
average painting response per stimulus with the 
mesh difference predictions from all but the actual 
transformation class for the same stimulus, 
across all stimuli per transformation class.  
 
4.2 Results and Discussion 
 We found substantial correlations 
between perceived and ground truth regions 
of transformation on the objects for all 
transformation classes, varying in range 
between r = 0.45 and r = 0.78 (Fig. 7D). All of 
the correlations were clearly above chance, 
with all z > 402.49, all p < .001. The relatively 
low correlation for the "cut" transformation 
can be explained by the very localized effects 
of this transformation, together with a 
relatively coarse painting style most 
participants adopted (even though they could 
adjust the size of their virtual brush, hardly 
anyone chose to do so). The results show 
that even though participants were never 
shown the non-transformed original shape, 
they could identify and localize features that 
were introduced by a transformation that had 
been applied to it. 
 
5 Experiment 4 (Deformation rating) 

5.1 Materials and Methods 
 5.1.1 Participants. A new group of 15 
students from Justus-Liebig-University 
Giessen, Germany, with normal or corrected 
vision participated in the experiment for 
financial compensation. Participant 
procedures were the same as in Experiment 
1. 
 
 5.1.2 Stimuli.  For Experiment 4, we 
added three intermediate levels of 
transformation by using Blender Shape Keys 
(Blender 2.76, Stichting Blender Foundation, 
Amsterdam, NL) to interpolate between each 
base object and each of its transformed 
versions, resulting in five transformation 
levels (0%, 25%, 50%, 75%, 100% 
transformation). We rendered these new 
stimuli in the same way as the previous ones, 
obtaining a total of 320 stimuli (5 magnitude 
levels ´ 8 transformations ´ 8 base objects). 
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As the 0% condition is identical across all 
transformations (i.e., it is the non-transformed 
original shape), we removed the (7 
transformations ´ 8 base objects) = 56 
redundant stimuli, yielding a total of 264 
unique stimuli. All stimuli can be obtained 
from https://doi.org/10.5281/zenodo.2609016. 
 
 5.1.3 Procedure. In each experimental 
trial, we showed participants one of the 264 
stimuli and asked them to "make a rating on 
the provided scale between not deformed and 
strongly deformed". After choosing a position 
on the rating bar they proceeded to the next 
trial by clicking. Participants did not see any 
of the stimuli before the first trial. The height 
and width of each stimulus on screen was 
22.5 ´ 30.0 cm (about 25.78 ´ 34.38° of 
visual angle at a monitor distance of about 50 
cm). Stimuli were presented on a gray 
background on a Dell U2412M monitor at a 
resolution of 1920 x 1200 pixels. Each 
participant responded to all 264 stimuli in 
random order.  
 
 5.1.4 Analysis. For analysis, we derived 
two mesh measures. As a first measure, we 
calculated the ground truth magnitude of 
deformation—equivalently to Experiment 3—
by calculating the 3D Euclidean distance 
between each visible vertex in the 
transformed object and its counterpart in the 
base object (Fig. 8A,B) and rendering the 
result into an image. We normalized all 
differences across all shapes and 
transformations to the range [0,1], and 
averaged these vertex differences per shape, 
yielding a single value of deformation per 
stimulus. This measure was inspired by our 
previous research in which we showed that 
perceived deformation was a very good 
predictor of perceived softness-and strongly 
correlated with actual mesh deformation 
(Paulun, Schmidt, van Assen, & Fleming, 
2017). We reasoned that participants in the 
current study might also rely on deformation 
to estimate the magnitude of object change. 
However, in contrast to our previous studies, 
changes in object shape were local rather 
than global (Paulun et al., 2017; Schmidt 
& Fleming, 2016; Spröte & Fleming, 2016). 
As results of Experiment 3 show that 
participants can infer the spatial extent of 

transformations, we decided to compute, as a 
second measure, the ground truth area of 
deformation by calculating the area of 
deformed faces (i.e., faces with at least one 
vertex with difference > 0; again only 
considering faces that were visible from the 
point of view) (Fig. 8C). We averaged this 
area of deformed faces per shape, and 
normalized all areas across all shapes and 
transformations to the range [0,1], yielding a 
single value of deformation area per stimulus. 
We performed multiple regression analyses 
across all stimuli and within transformation 
classes to measure the predictive power of 
magnitude and area of deformation for 
participant responses. If responses can be 
explained by these two factors, this suggests 
that participants might use perceptual 
equivalents of these (i.e., perceptual 
quantities that correlate with these factors) to 
infer the magnitude of transformation. Data 
can be obtained from 
https://doi.org/10.5281/zenodo.2609016. 
 
5.2 Results and Discussion 
 The average perceived deformation 
increased across the five transformation 
levels within each transformation, with overall 
perceived deformation varying between 
transformations (Fig. 9A). For analysis, we 
correlated participants' average responses 
per stimulus with the magnitude and area of 
deformation (Fig. 9B). Even across all stimuli 
there is a substantial correlation between 
perceived deformation and the ground truth 
magnitude of deformation as well as the area 
of deformation (the correlations between both 
mesh measures and transformation levels 
were about R² = 0.41 and 0.46, respectively). 
As correlation between the two measures is 
relatively weak in our set of stimuli (Fig. 9C), 
we entered them both as predictors in a 
multiple regression analysis.  
 A multiple regression across all 
transformation classes explained R² = 0.68 of 
the variance, with regression weights of 0.43 
and 0.56 for magnitude and area of 
deformation, respectively. Based on previous 
work on the estimation of high-level object 
and material properties (Long, Yu, & Konkle, 
2017; Schmid & Doerschner, 2018; Schmidt, 
Hegele, & Fleming, 2017; van Assen, Barla, 
& Fleming, 2018), we hypothesized that 
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participants might use different mid-level 
features of shape (such as ripples, bumps, or 
concavities and holes), depending on the 
type of transformation. This would predict that 
responses to different transformations are 
explained by the two different measures to a 
different degree. To test this hypothesis, we 
also performed multiple regressions within 
each transformation class. In accordance with 
our hypothesis, the overall explained variance 
increased to R² = 0.82, with regression 
weights showing distinct patterns between 
transformations (Fig. 10; for scatter plots see 
supplementary Figures S2 and S3): while for 
some transformation classes, perceived 
deformation was almost exclusively explained 
by the magnitude of deformation, for other 
transformation classes, perceived 
deformation was explained to a substantial 
amount by the area of deformation.  

 
Figure 8. Calculation of magnitude and area of 
deformation measures illustrated with an example 
shape and transformation. (A) Equivalently to 
analysis of Experiment 3, we calculated the 
difference between the transformed meshes of 
each deformation level and the mesh of the base 
object. Thus, we obtain for each stimulus a 
unique value of (B) its magnitude of deformation, 
defined by the average distance of each 
deformed vertex from non-deformed vertex 
location, and a value of (C) its area of 
deformation, given by the average area of 
deformed faces. 
 

 
Figure 9. (A) Average ratings of perceived 
deformation for the five different transformation 
levels (bars from left to right), separately for each 
transformation. (B) Scatter plots for average 
ratings of perceived deformation as a function of 
magnitude of deformation (left) and area of 
deformation (right). (C) Scatter plots for the 
relationship between the magnitude of 
deformation and the area of deformation. In all 
plots (B,C), each data point represents a single 
stimulus; magnitude and area of deformation 
were normalized to the range [0,1]; and R² values 
are based on the Pearson correlation coefficient. 
  

 
Figure 10. Regression weights from multiple 
linear regression per transformation class on 
average deformation ratings, using magnitude of 
deformation and area of deformation as 
predictors. Plots are ordered from left to right and 
top to bottom with decreasing weights for 
magnitude of deformation, and increasing weights 
for area of deformation.  
 

6 General Discussion 

6.1 Summary of Findings 
 Transformations of object shape are 
ubiquitous in our visual environment. Here, 
we document the capability of our visual and 
cognitive systems to solve two 
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complementary and linked inferences: 
recognizing objects across transformations, 
and recognizing transformations across 
objects. Specifically, we tested whether we 
can distinguish the causal origin of different 
features, teasing apart the characteristics of 
the original shape from those imposed by 
transformations. In four experiments, we 
demonstrate that participants (i) show high 
levels of mutual agreement in naming 
transformations, (ii) can classify objects 
according to their original shape or according 
to their transformations, (iii) can mark the 
areas affected by the transformations, and 
(iv) can to some extent estimate the 
magnitude of transformations. This shows 
that observers distinguish between 
contributions of the previous object shape 
and its recent transformations. In particular, 
the fact that participants can sort the same 
stimuli almost perfectly into groups according 
to either their original shape or the 
transformation, suggests that they can, at will, 
attend to the different features associated 
with these distinct causes. We suggest that it 
may be useful to pose these abilities as a 
‘scission’ of object shape into different 
contributions, analogous to scission problems 
in other areas of visual perception such as 
the separation of retinal luminance values 
into separate representational layers of 
illumination and reflectance. 
 
6.2 Functional Utility of Shape Scission 
 Why would our visual and cognitive 
systems separate shapes into different causal 
layers? Scission models in lightness 
perception propose that layers of illumination 
and reflectance are used to achieve lightness 
constancy. Similarly, ‘shape scission’ could 
aid us identify and understand 
transformations of object shape, to facilitate 
object constancy—for example, by 
recognizing objects across diverse viewing 
conditions or organisms across growth 
(Schmidt & Fleming, 2016). The ability to infer 
the processes that have shaped an object 
could also support object classification for 
novel stimuli, especially when only a single or 
very few exemplars are presented—for 
example, in predicting or generating plausible 
variants of transformed objects (Feldman, 
1992, 1997). Finally, identifying and 

understanding transformations is used to infer 
object properties, such as softness of 
deformable objects (e.g., Bi, Jin, Nienborg, & 
Xiao, 2018; Bi & Xiao, 2016; Bouman, Xiao, 
Battaglia, & Freeman, 2014; Paulun et al., 
2017; Schmid & Doerschner, 2018; Schmidt, 
Paulun et al., 2017) and anticipate future 
object behaviors (such as bouncing or 
shattering; Alley, Schmid, & Doerschner, 
submitted; Bates, Yildirim, Tenenbaum, & 
Battaglia, 2015) and motor affordances (such 
as locations and grip and load forces in 
grasping, and forces in probing objects; Klein, 
Maiello, Paulun, & Fleming, 2018; Zöller, 
Lezkan, Paulun, Fleming, & Drewing, 2018). 
Based on the inference that an object has 
been stretched, we can make an educated 
guess about its internal properties (e.g., it is 
rather malleable, elastic and hollow) and 
potentially about its material category (e.g., it 
is more likely to be a rubber balloon than a 
leather ball). This will also guide us in 
predicting object behavior and in handling it: 
for example, a hammer with a cracked handle 
is unsuitable for hammering; withered salad 
should not be eaten; a bent knife is bad for 
cutting bread. Taken together, ‘shape 
scission’ provides us with a layered 
representation of object shape that we can 
use to identify and understand 
transformations which is potentially important 
for a wide range of perceptual and cognitive 
tasks. 

 
6.3 Relation to previous work 
 Our findings are in line with previous 
evidence and theoretical work suggesting that 
we represent object shape at multiple 
representational layers (Green, 2015), some 
of which we access only when needed (Op 
de Beeck, Torfs, & Wagemans, 2008; Pinna, 
Koenderink, & van Doorn, 2015). Depending 
on their task, participants grouped the objects 
according to different features. This 
corroborates findings from a recent study in 
our lab, where participants were able to group 
the same images of transformed (e.g., 
twisted, bent) samples of different materials 
(e.g., cardboard, putty) either by 
transformation or material (Schmidt 
& Fleming, 2018). In related work, Pinna 
(2010) demonstrated that we infer particular 
transformations (“happenings”) as well as 
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material properties (Pinna & Deiana, 2015) 
from simple, deformed 2D stimuli like 
rectangles or grid-like arrangements of 
squares. Our study extends these findings by 
exploring a wider range of transformations; by 
using more carefully controlled stimuli (all 
factors except original shape and 
transformation were held constant); providing 
convergent evidence for ‘shape scission’ from 
multiple tasks (such as spontaneous 
identification of transformations and explicit 
multiple groupings of related stimuli); and by 
computing geometrical shape quantities to 
predict judgments of transformation location 
and magnitude, which was not possible with 
the photographs of natural materials used in 
Schmidt & Fleming (2018).  
 A deeper question is how do we identify 
regions of transformation and assign meaning 
to them? In his seminal work, Leyton (1989) 
suggested that we infer causal history by (i) 
identifying symmetry axes terminating at local 
curvature extremes of its contour, and (ii) 
assuming that transformations proceed along 
the direction of these local symmetry axes. 
He also argued that the perceived order of 
these transformations depends on their detail: 
observers would assume that larger changes 
have taken long compared to smaller 
changes. Consequently, the (smaller) details 
of the contour should be perceived as results 
of the most recent transformations 
("deblurring"). However, despite its intuitive 
appeal, empirical evidence has been scarce 
for the basic model (Leyton, 1986a, 1986b) 
as well as for the meanings that Leyton 
(1989) assigned to the different 
transformations following from his theoretical 
work (e.g., "protrusion" or "squashing"). 
Moreover, the mathematical foundations of 
his theory have been the subject of strong 
criticism (Hendrickx & Wagemans, 1999). It 
also remains unclear how the visual system 
might group multiple process-related 
symmetry axes of a given shape into 
coherent global interpretation (e.g., twisting). 
As a result, complex, texture-like 
transformations, like ours, cannot easily be 
explained in terms of simple, local geometric 
transformations as described in Leyton's 
framework.  
 

6.4 Perceptual representations of 
shape 
 We suggest that observed objects are 
represented in a multidimensional shape 
feature space, which has been established 
based on previous visual experience (Brincat 
& Connor, 2004; DiCarlo & Cox, 2007; Leeds, 
Pyles, & Tarr, 2014). In this shape space, 
each object occupies a specific location, 
while object clusters (e.g., instantiations of a 
single object under different viewpoints, or 
objects sharing a perceptual category) are 
organized along manifolds within the space. 
These different manifolds are not mutually 
exclusive so that they enable parallel 
representations of multiple contributions to 
object shape. For example, all "twisted" 
objects, signified by parallel, spiraling 
creases, would be organized along a specific 
manifold. We speculate that the manifolds are 
established based on prior experiences and 
related assumptions about likely variations of 
objects (Feldman, 1992, 1997; Lowet, 
Firestone, & Scholl, 2018; Shepard & 
Cermak, 1973). Such multi-dimensional 
representations are well suited to inferring 
physical properties of objects and materials.  
For example, we have recently shown that 
when judging the viscosity of liquids, the 
visual system represents stimuli using a 
number of complementary ‘mid-level’ shape 
and motion features (Van Assen, Barla & 
Fleming, 2018).  Such features ensure that 
very diverse stimuli with similar physical 
properties (e.g., the same liquid interacting 
with very different scenes) are brought close 
together in the representational space, 
making it easier for high-level processes to 
read out the viscosity.  We reason that if such 
an approach works for complex, highly 
mutable deforming shapes like liquids, it is 
likely also works for other types of shape-
altering transformation, like the ones used 
here. Only when observers share similar 
manifolds, they will name transformations 
across objects with high mutual agreement 
(Pinna, 2010; Schmidt & Fleming, 2018). An 
important topic for future research is to 
develop stimulus-computable feature spaces 
for representing objects with different 
transformations applied, so that this 
conjecture can be tested.  It is particularly 
interesting to ask which specific features 
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define the space, and how they are acquired 
through learning.  A successful model should 
be able to predict quantitative similarity 
relationships between stimuli (including errors 
as well as successes), and explain how both 
‘base object’ and ‘transformation’ 
components can be decoded from the 
positions of items in the feature space.  Such 
models would allow us to progress from 
general statements about the use of high-
dimensional feature spaces to specific 
quantitative predictions. 
 In addition to identifying transformations, 
our findings show that we can also estimate 
properties of the transformation process, 
such as the location and the magnitude of the 
transformation. Localization may be based on 
detecting the features associated with a 
known transformation (e.g., the distinctive 
rough edge of a tear) of transformation shape 
features on the object, analogous to the 
detection of features associated with familiar 
objects (e.g., the trunk of an elephant). 
However, it is also interesting to ask how the 
visual system could segment and localize 
unfamiliar transformations, based on non-
stationarities in the surface statistics (e.g., a 
localized increase in roughness). 
 The estimation of transformation 
magnitude is perhaps an even more complex 
computational problem as it involves pooling 
and weighing multiple features. A good deal 
of the variance in participants’ responses was 
explained by a combination of (i) the mesh 
difference between the current and the 
previous object shape (magnitude of 
deformation) and (ii) the size of the surface 
area affected by the transformation (area of 
deformation). Although we do not think that 
the visual system computes exactly these 
measures (not least as they would require an 
explicit estimate of the original shape), it may 
use heuristics that approximate these 
quantities. For example, to estimate the 
magnitude of deformation the visual system 
might rely on the heuristics related to amodal 
completion, particularly when features of the 
original object are “occluded” by the 
transformation-related features, but the 
surrounding surface structure remains intact. 
Under these circumstances continuation 
based on local contours and surface 
structure, or global factors such as symmetry 

(e.g., Tse, 1999) could facilitate recovery of 
the original shape ‘hidden’ by the 
transformation. The ‘amodally completed’ 
shape could be compared to the observed 
shape to estimate the area and magnitude of 
transformation. 
 Notably, the relative weights of the two 
mesh measures were different between 
transformations. For example, the area of 
deformation explained responses best in 
rather "textural" surface transformations 
(such as "grown" and "dried"). This suggests 
that different transformations are not only 
characterized by their different (combinations) 
of shape features but that we might also use 
different (combinations) of heuristics to reveal 
transformation attributes (e.g., transformation 
magnitude). 

 
6.5 Limitations 
 Our findings and conclusions are limited 
by the selection of base objects and 
transformations, and do not generalize to all 
other objects and transformations. Indeed, in 
a previous study with more global 
transformations, we found that observers 
were only moderately good at inferring causal 
history (Schmidt, Paulun et al., 2017). There 
are many instances where observers would 
not, even in principle, be able to infer the 
causal history of objects. Not all 
transformations involved in the generative 
processes producing an object (such as 
manufacture, biological growth or self-
organization) leave traces in the shape of the 
object. For example, we are not able to infer 
all processes and forces involved in the 
production of a computer mouse. Nor can we 
infer transformations introducing shape 
features that are indistinguishable from those 
of the original object. Indeed, for familiar 
objects, transformations are presumably only 
perceived as such when they represent a 
deviation from the typical shape 
characteristics of the class: the shape of a 
bumper bar is not seen as due to 
transformations, but the dents from the latest 
parking mishap are (also see discussion in 
Schmidt & Fleming, 2018). 
 This also demonstrates that depending 
on the specific stimulus and task, the 
inferences span both perceptual and 
cognitive abilities, with different levels of 
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detail in the inference about the sequence of 
events that led to the observed state of the 
object (see also discussion in Spröte 
& Fleming, 2016). While the distinction 
between perception and cognition is 
important (Chen & Scholl, 2016), many tasks 
naturally span both¾with ‘shape scission’ 
tasks being of this type. For example, the 
consistency of naming responses across 
participants is illustrating cognitive, semantic 
judgments based on shared previous 
experience. By contrast, the other reported 
tasks do also involve perceptual components. 
Especially the ability of participants to localize 
and estimate the magnitude of 
transformations suggests that they can 
perceptually parse objects into transformed 
and non-transformed regions. The correlation 
of magnitude estimations with objective mesh 
measures (i.e., characteristics of the physical 
object shape) emphasizes the role of visual 
(shape) processing in making those 
inferences. 
 Finally, our selection of transformations 
was ad-hoc and-because they were direct 
mesh deformations-not subject to the 
physical constraints of real-world objects and 
materials (see discussion in Schmidt & 
Fleming, 2018). Also, our findings were 
obtained under close to ideal conditions for 
shape perception: objects were static, with 
hardly any scene context, no interreflections, 
no deep shadows and so on. Real-world 
shape perception is subject to these and 
other sources of noise which we eliminated 
by careful rendering. Nevertheless, our 
findings illustrate some salient examples in 
which we perceptually ‘understand’ shape by 
parsing and interpreting causally significant 
features. 
 
6.6 Conclusions and future directions 
 In a series of experiments, we 
demonstrated the ability of participants to 
identify and understand object 
transformations, and to estimate properties of 
the transformation process. In particular, they 
could tease apart the shape features of the 
original object from those introduced by the 
transformation. We suggest that one useful 
way of framing such inferences is in terms of 
‘shape scission’—the separation of object 
shape into different representational layers of 

intrinsic (such as typical shape, object 
material) and extrinsic (such as orientation, 
lighting conditions, causal history) 
contributions to the observed shape. 
Although caution is required in interpreting 
our results as the purest form of ‘shape 
scission’, participants do seem capable of 
distinguishing and comparing different kinds 
of features within a given object. 
 Many questions remain. Which 
perceptual information do we use to separate 
original and transformed regions of the 
objects? How do we decide which regions 
belong to the original object and which belong 
to the transformation? How detailed is our 
representation of the original object, and 
under which circumstances can we ‘invert’ 
the transformations to recover its original 
features? What computations recover the 
causal history of objects from the feature 
representations (i.e., how do we assign 
‘meaning’ to observed features)? What are 
the neural representations of these different 
types of perceptual and cognitive processes 
(Op de Beeck et al., 2008; Ward et al., 
2018)? Computational and neuroimaging 
techniques should be combined to answer 
these and related questions.  
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Supplementary Material 

 

 
 
Figure S1. Replication of Experiment 1. Each participant was presented with just a single stimulus, with 5 
participants judging each transformation class (on a random original shape), adding up to 40 participants 
(24 male, 16 female, age 29-64 years). Each graph shows the percentage of observers describing a 
stimulus with particular names, titles are based on results from Experiment 1. 
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Figure S2. Scatter plots for average ratings of perceived deformation as a function of the magnitude of 
deformation per transformation class. Each data point represents a single stimulus. Magnitude of 
deformation was normalized to the range [0,1]. R² values are based on the Pearson correlation coefficient. 
 
 
 

 
Figure S3. Scatter plots for average ratings of perceived deformation as a function of the area of 
deformation per transformation class. For details see Fig. S2. 
 


